9.12 Line Integral

Scalar functions: F(x,y,z), F(x,y), f(x)

Scalar potential: u(x,y,z)

Curves: C, C₁, C₂

Limits of integrations: a, b, α , β

Parameters: t, s

Polar coordinates: r, θ

Vector field: $\vec{F}(P,Q,R)$

Position vector: $\vec{r}(s)$

Unit vectors: \vec{i} , \vec{j} , \vec{k} , $\vec{\tau}$

Area of region: S

Length of a curve: L

Mass of a wire: m

Density: $\rho(x,y,z)$, $\rho(x,y)$

Coordinates of center of mass: \bar{x} , \bar{y} , \bar{z}

First moments: M_{xy} , M_{yz} , M_{xz}

Moments of inertia: I_x , I_y , I_z

Volume of a solid: V

Work: W

Magnetic field: \vec{B}

Current: I

Electromotive force: ε

Magnetic flux: ψ

1117. Line Integral of a Scalar Function

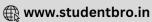
Let a curve C be given by the vector function $\vec{r} = \vec{r}(s)$,

 $0 \le s \le S$, and a scalar function F is defined over the curve C.

Then

$$\int_{0}^{s} F(\vec{r}(s))ds = \int_{C} F(x,y,z)ds = \int_{C} Fds,$$

where ds is the arc length differential.



1118.
$$\int_{C_1 \cup C_2} F \, ds = \int_{C_1} F \, ds + \int_{C_2} F \, ds$$

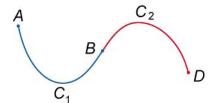


Figure 203.

1119. If the smooth curve C is parametrized by $\vec{r} = \vec{r}(t)$, $\alpha \le t \le \beta$, then

$$\int_{C} F(x,y,z) ds = \int_{\alpha}^{\beta} F(x(t),y(t),z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt.$$

1120. If C is a smooth curve in the xy-plane given by the equation y = f(x), $a \le x \le b$, then

$$\int\limits_C F(x,y)ds = \int\limits_a^b F(x,f(x))\sqrt{1+\big(f'(x)\big)^2}\,dx\;.$$

1121. Line Integral of Scalar Function in Polar Coordinates

$$\int_{C} F(x,y)ds = \int_{\alpha}^{\beta} F(r\cos\theta, r\sin\theta) \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta,$$

where the curve C is defined by the polar function $r(\theta)$.

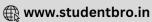
1122. Line Integral of Vector Field

Let a curve C be defined by the vector function $\vec{r} = \vec{r}(s)$,

$$0 \le s \le S$$
. Then

$$\frac{d\vec{r}}{ds} = \vec{\tau} = (\cos\alpha, \cos\beta, \cos\gamma)$$

is the unit vector of the tangent line to this curve.



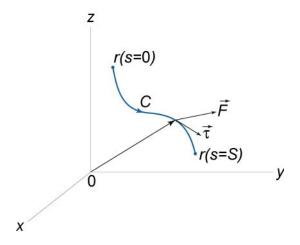


Figure 204.

Let a vector field $\vec{F}(P,Q,R)$ is defined over the curve C. Then the line integral of the vector field \vec{F} along the curve C is

$$\int_{C} Pdx + Qdy + Rdz = \int_{0}^{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds.$$

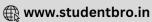
1123. Properties of Line Integrals of Vector Fields $\int_{-C} (\vec{F} \cdot d\vec{r}) = -\int_{C} (\vec{F} \cdot d\vec{r}),$

where -C denote the curve with the opposite orientation.

$$\int_{C} \left(\vec{F} \cdot d\vec{r} \right) = \int_{C_{1} \cup C_{2}} \left(\vec{F} \cdot d\vec{r} \right) = \int_{C_{1}} \left(\vec{F} \cdot d\vec{r} \right) + \int_{C_{2}} \left(\vec{F} \cdot d\vec{r} \right),$$

where C is the union of the curves C_1 and C_2 .

1124. If the curve C is parameterized by $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, $\alpha \le t \le \beta$, then $\int Pdx + Qdy + Rdz =$



c
$$= \int_{\alpha}^{\beta} \left(P(x(t), y(t), z(t)) \frac{dx}{dt} + Q(x(t), y(t), z(t)) \frac{dy}{dt} + R(x(t), y(t), z(t)) \frac{dz}{dt} \right) dt$$

1125. If C lies in the xy-plane and given by the equation y = f(x), then

$$\int_{C} P dx + Q dy = \int_{a}^{b} \left(P(x, f(x)) + Q(x, f(x)) \frac{df}{dx} \right) dx.$$

1126. Green's Theorem

$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{C} P dx + Q dy,$$

where $\vec{F} = P(x,y)\vec{i} + Q(x,y)\vec{j}$ is a continuous vector function with continuous first partial derivatives $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ in a some domain R, which is bounded by a closed, piecewise smooth curve C.

1127. Area of a Region R Bounded by the Curve C

$$S = \iint_{R} dx dy = \frac{1}{2} \oint_{C} x dy - y dx$$

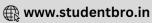
1128. Path Independence of Line Integrals

The line integral of a vector function $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ is said to be path independent, if and only if P, Q, and R are continuous in a domain D, and if there exists some scalar function u = u(x,y,z) (a scalar potential) in D such that

$$\vec{F} = \text{grad } u$$
, or $\frac{\partial u}{\partial x} = P$, $\frac{\partial u}{\partial y} = Q$, $\frac{\partial u}{\partial z} = R$.

Then

$$\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r} = \int_{C} Pdx + Qdy + Rdz = u(B) - u(A).$$



1129. Test for a Conservative Field

A vector field of the form $\vec{F} = \text{grad } u$ is called a conservative field. The line integral of a vector function $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ is path independent if and only if

$$\operatorname{curl} \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \vec{0}.$$

If the line integral is taken in xy-plane so that

$$\int Pdx + Qdy = u(B) - u(A),$$

then the test for determining if a vector field is conservative can be written in the form

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

1130. Length of a Curve

$$L = \int_{C} ds = \int_{\alpha}^{\beta} \left| \frac{d\vec{r}}{dt}(t) \right| dt = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt,$$

where C ia a piecewise smooth curve described by the position vector $\vec{r}(t)$, $\alpha \le t \le \beta$.

If the curve C is two-dimensional, then

$$L = \int_{C} ds = \int_{\alpha}^{\beta} \left| \frac{d\vec{r}}{dt}(t) \right| dt = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

If the curve C is the graph of a function y = f(x) in the xyplane $(a \le x \le b)$, then

$$L = \int_{1}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

1131. Length of a Curve in Polar Coordinates

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dr}{d\theta}\right)^2 + r^2} d\theta,$$

where the curve C is given by the equation $r = r(\theta)$, $\alpha \le \theta \le \beta$ in polar coordinates.

1132. Mass of a Wire

$$m = \int_{C} \rho(x, y, z) ds$$
,

where $\rho(x,y,z)$ is the mass per unit length of the wire.

If C is a curve parametrized by the vector function $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, then the mass can be computed by the formula

$$m = \int_{\alpha}^{\beta} \rho(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt.$$

If C is a curve in xy-plane, then the mass of the wire is given

$$m = \int_{C} \rho(x, y) ds$$
,

or

$$m = \int_{\alpha}^{\beta} \rho(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \text{ (in parametric form).}$$

1133. Center of Mass of a Wire

$$\overline{x} = \frac{M_{yz}}{m}, \ \overline{y} = \frac{M_{xz}}{m}, \ \overline{z} = \frac{M_{xy}}{m},$$

where

$$M_{yz} = \int_{C} x \rho(x, y, z) ds$$
,

$$\begin{aligned} M_{xz} &= \int_{C} y \rho(x,y,z) ds, \\ M_{xy} &= \int_{C} z \rho(x,y,z) ds. \end{aligned}$$

1134. Moments of Inertia

The moments of inertia about the x-axis, y-axis, and z-axis are given by the formulas

$$I_{x} = \int_{C} (y^{2} + z^{2}) \rho(x, y, z) ds,$$

$$I_{y} = \int_{C} (x^{2} + z^{2}) \rho(x, y, z) ds,$$

$$I_{z} = \int_{C} (x^{2} + y^{2}) \rho(x, y, z) ds.$$

1135. Area of a Region Bounded by a Closed Curve

$$S = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C x dy - y dx.$$

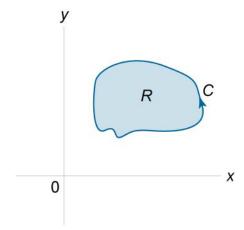


Figure 205.

If the closed curve C is given in parametric form $\vec{r}(t) = \langle x(t), y(t) \rangle$, then the area can be calculated by the formula

$$S = \int_{\alpha}^{\beta} x(t) \frac{dy}{dt} dt = -\int_{\alpha}^{\beta} y(t) \frac{dx}{dt} dt = \frac{1}{2} \int_{\alpha}^{\beta} \left(x(t) \frac{dy}{dt} - y(t) \frac{dx}{dt} \right) dt.$$

1136. Volume of a Solid Formed by Rotating a Closed Curve about the x-axis

$$V = -\pi \oint_{C} y^{2} dx = -2\pi \oint_{C} xy dy = -\frac{\pi}{2} \oint_{C} 2xy dy + y^{2} dx$$

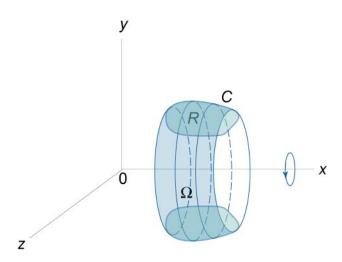


Figure 206.

1137. Work

Work done by a force \vec{F} on an object moving along a curve C is given by the line integral

$$W = \int_{C} \vec{F} \cdot d\vec{r},$$

where \vec{F} is the vector force field acting on the object, $d\vec{r}$ is the unit tangent vector.

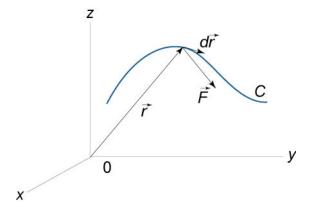


Figure 207.

If the object is moved along a curve C in the xy-plane, then $W = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} Pdx + Qdy$,

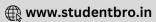
If a path C is specified by a parameter t (t often means time), the formula for calculating work becomes

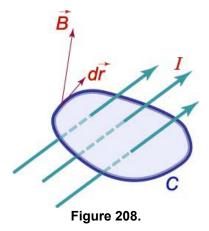
$$W = \int_{\alpha}^{\beta} \left[P(x(t), y(t), z(t)) \frac{dx}{dt} + Q(x(t), y(t), z(t)) \frac{dy}{dt} + R(x(t), y(t), z(t)) \frac{dz}{dt} \right] dt,$$
 where t goes from α to β .

If a vector field \vec{F} is conservative and u(x,y,z) is a scalar potential of the field, then the work on an object moving from A to B can be found by the formula W = u(B) - u(A).

1138. Ampere's Law
$$\oint_{C} \vec{B} \cdot d\vec{r} = \mu_0 I.$$

The line integral of a magnetic field \vec{B} around a closed path C is equal to the total current I flowing through the area bounded by the path.





1139. Faraday's Law

$$\epsilon = \oint_C \vec{E} \cdot d\vec{r} = -\frac{d\psi}{dt}$$

The electromotive force (emf) ϵ induced around a closed loop C is equal to the rate of the change of magnetic flux ψ passing through the loop.

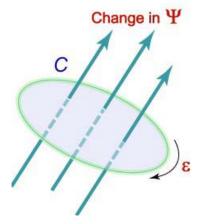


Figure 209.